服务热线
当前位置:主页 > 案例展示 >

化学所在水凝胶的可控构筑及功能化方面取得进

发布时间 2020-11-10 23:20

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  高分子水凝胶是一种具有三维交联网状结构的高分子材料,在组织工程、伤口敷料、疾病诊断与治疗等生物医学工程领域具有重要的应用价值。但是,传统水凝胶的性能难调控、力学强度弱、生物相容性差、生物不可降解,限制了其临床实际应用。

  在国家自然科学基金委、科技部和中国科学院的大力支持下,中科院化学研究所高分子物理与化学实验室吴德成课题组科研人员在水凝胶的可控制备方面取得新进展。研究人员设计了一类具有易断裂重排的双硫键连接核壳结构的两亲性超支化高分子,通过调节聚合物水溶液的酸碱度可触发或终止体系巯基双硫键交换反应来精确控制交联反应的引发、终止及再引发,实现了水凝胶的可控制备(J. Am. Chem. Soc.2010,132, 15140-15143);通过交联体系微纳米化,如先分散为微纳米液滴,再触发交联反应,实现了单层到三层微纳米水凝胶粒子的可控制备,证明得到的微纳米凝胶粒子具有结构、粒径和稳定性可调控的功能(ACS Macro Lett.2012,1, 1295-1299);他们也证实了凝胶可控制备的普适性:具有双硫键连接的无机POSS 核/亲水壳结构的星形高分子适用于高力学强度杂化凝胶的可控制备(Polym. Chem.2013,4, 4596-4600);制备了亲水链段经双硫键接枝疏水聚合物主链的刷形高分子,实现了水凝胶的光触发可控制备,拓展凝胶可控制备的调控手段,与pH控制相比,光控方法更简单、易操作、与体系非直接接触,在时间和空间上更容易实现水凝胶的定制化制备(Polym. Chem.2016,7, 1429-1438)。

  该实验室的研究人员也在高强水凝胶的功能构筑及生物医用方面取得新进展。他们与解放军总医院的科研人员合作开发了一种负载万古霉素的四臂聚乙二醇水凝胶的止血抑菌材料,该水凝胶可原位形成覆盖不规则形状的伤口,具有优异的力学性能、生物相容性、止血效果和抑菌能力,适用于战争、车祸以及自然灾害等情况下的伤员紧急救治(ACS Appl. Mater. Interfaces2016,8, 12674-12683)。最近,他们利用简单的溶液浸泡方法将壳聚糖复合凝胶转化为高强高韧且能够快速恢复的物理-化学双网络凝胶(如图):将短链壳聚糖通过氢键结合到共价聚丙烯酰胺网络中制备了壳聚糖复合水凝胶,而后通过碱性及盐溶液浸泡处理复合凝胶诱导壳聚糖微晶和链缠结物理网络的形成,获得了具有卓越力学性能的物理-化学双网络凝胶;该凝胶具有高的拉伸强度(约2MPa),超高韧性(断裂能约10 kJ m−2),快速的自恢复能力,优异的负重能力、抗碾压性能和抗疲劳性能(Adv. Mater.2016,28, 7178-7184)。北京快3,该研究成果发表后被MaterialsViewsChina工作亮点报道。

  高分子水凝胶是一种具有三维交联网状结构的高分子材料,在组织工程、伤口敷料、疾病诊断与治疗等生物医学工程领域具有重要的应用价值。但是,传统水凝胶的性能难调控、力学强度弱、生物相容性差、生物不可降解,限制了其临床实际应用。

  在国家自然科学基金委、科技部和中国科学院的大力支持下,中科院化学研究所高分子物理与化学实验室吴德成课题组科研人员在水凝胶的可控制备方面取得新进展。研究人员设计了一类具有易断裂重排的双硫键连接核壳结构的两亲性超支化高分子,通过调节聚合物水溶液的酸碱度可触发或终止体系巯基双硫键交换反应来精确控制交联反应的引发、终止及再引发,实现了水凝胶的可控制备(J. Am. Chem. Soc. 2010, 132, 15140-15143);通过交联体系微纳米化,如先分散为微纳米液滴,再触发交联反应,实现了单层到三层微纳米水凝胶粒子的可控制备,证明得到的微纳米凝胶粒子具有结构、粒径和稳定性可调控的功能(ACS Macro Lett. 2012, 1, 1295-1299);他们也证实了凝胶可控制备的普适性:具有双硫键连接的无机POSS 核/亲水壳结构的星形高分子适用于高力学强度杂化凝胶的可控制备(Polym. Chem. 2013, 4, 4596-4600);制备了亲水链段经双硫键接枝疏水聚合物主链的刷形高分子,实现了水凝胶的光触发可控制备,拓展凝胶可控制备的调控手段,与pH控制相比,光控方法更简单、易操作、与体系非直接接触,在时间和空间上更容易实现水凝胶的定制化制备(Polym. Chem. 2016, 7, 1429-1438)。

  该实验室的研究人员也在高强水凝胶的功能构筑及生物医用方面取得新进展。他们与解放军总医院的科研人员合作开发了一种负载万古霉素的四臂聚乙二醇水凝胶的止血抑菌材料,该水凝胶可原位形成覆盖不规则形状的伤口,具有优异的力学性能、生物相容性、止血效果和抑菌能力,适用于战争、车祸以及自然灾害等情况下的伤员紧急救治(ACS Appl. Mater. Interfaces 2016, 8, 12674-12683)。最近,他们利用简单的溶液浸泡方法将壳聚糖复合凝胶转化为高强高韧且能够快速恢复的物理-化学双网络凝胶(如图):将短链壳聚糖通过氢键结合到共价聚丙烯酰胺网络中制备了壳聚糖复合水凝胶,而后通过碱性及盐溶液浸泡处理复合凝胶诱导壳聚糖微晶和链缠结物理网络的形成,获得了具有卓越力学性能的物理-化学双网络凝胶;该凝胶具有高的拉伸强度(约2 MPa),超高韧性(断裂能约10 kJ m−2),快速的自恢复能力,优异的负重能力、抗碾压性能和抗疲劳性能(Adv. Mater. 2016, 28, 7178-7184)。该研究成果发表后被MaterialsViewsChina工作亮点报道。

北京快3平台-官网在线

联系人:李经理 座机:400-0573147 地址:河南省濮阳市巩义市夹津口工业园
微信二维码